CSENG Computer Science & Eng
College of Science & Engineering
Twin Cities
College of Science & Engineering
Twin Cities
Project Title:
Data Mining Research in Climate Science and Earth Science
This group has two major research tracks:
- Physics-Guided Machine Learning: Data-driven approaches that have been highly successful in other scientific disciplines hold significant potential for application in environmental sciences. These researchers are working towards building hybrid models that combine physics-based models with data-driven models to improve accuracy for different Earth science applications, including lake temperature modeling and river flow modeling.
- Monitoring Land Cover Change at Global Scale: The key focus of this project is to develop new computer science methods and tools that enable effective monitoring of various land cover changes happening on Earth's surface. This group has analyzed various land cover changes such as forest fires, deforestation, insect infestation in forests, urbanization, agricultural changes, and monitoring of water resources. The group has made significant improvements in monitoring forest fires at global scale. The group is working towards finishing the release of a new global dataset on water. Currently, the group is focused towards monitoring crops from satellite imagery.
Research by this group has been featured on the MSI website:
Project Investigators
Andrius Adomavicius
Athreyi Badithela
Salman Bin Kashif
Shin-Young Chung
Rahul Ghosh
Varun Gopal
Tianzhe Han
Quyen Huynh
David Hwang
Xiaowei Jia
Anuj Karpatne
Ankush Khandelwal
Professor Vipin Kumar
Rupam Kumawat
Jia Li
Dr. Stefan Liess
Professor Kelvin Lim
Kelly Lindsay
Zachary Mceachran
Guruprasad Nayak
Are you a member of this group? Log in to see more information.