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Overview & goal

1. Technical overview

2. Experimental Design and QA/QC
3. Software tools

4. Analysis Showcase

Goal:

Give an overview of single cell analysis from experimental design through
analysis.



For specific questions on library preparation and
sequencing: consult UMGCI!!!

Single cell library preparations and sequencing recommendations are

e Changing fairly rapidly
e Often specific to the cell type(s) being targeted and the biological questions
being asked

As a result, the single cell folks at UMGC, who create the libraries and do the
sequencing are the experts you want to talk for specific decisions about library
preparation and sequencing.



Single cell genomics technical overview
Christy Henzler, PhD



What is single cell RNA-seq?

Figure 1. Single-cell RNA-seq reveals cellular
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Figure 1. Single-cell RNA-seq reveals cellular heterogeneity that is masked by bulk RNA-seq
methods.

https://www.10xgenomics.com/blog/single-cell-rna-seg-an-introductory-overview-and-tools-for-getting-started



In contrast, Low-input RNA-seq is a bulk RNA-seq method (one set
of data produced per sample, not per cell) for small amounts of

starting RNA
e

Figure 1. Single-cell RNA-seq reveals cellular
heterogeneity that is masked by bulk RNA-seq
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Figure 1. Single-cell RNA-seq reveals cellular heterogeneity that is masked by bulk RNA-seq
methods.

https://www.10xgenomics.com/blog/single-cell-rna-seg-an-introductory-overview-and-tools-for-getting-started



Spatial transcriptomics is a method for spatially-resolved RNA-seq
(can do protein, as well), though almost never at single-cell
resolution

https://www.10xgenomics.com/products/spatial-gene-expression https://nanostring.com/wp-content/uploads/BR_MK0981_GeoMx_Brochu
re_r19_FINAL_Single_ WEB.pdf



Droplet- vs plate-based scRNA-seq

Techniques

How many cells?

What part of gene is sequenced?

Sequencing depth

Droplet-based

Drop-seq, inDrop, 10X
Chromium

Many (thousands of
cells/sample, high-throughput)

3’ or 5 end

Thousands of reads

Plate-based
Smart-seq2, CEL-Seq2
Cell sorting, Fluidigm C1

Few (96/plate, low-throughput)

Full gene (but biased towards
longer genes)

Millions of reads



Droplet- vs plate-based scRNA-seq

Droplet-based

Techniques Drop-seq, inDrop, 10X
Chromium
How many cells? Many (thousands of

cells/sample, high-throughput)

What part of gene is sequenced? | 3’ or 5 end

Sequencing depth Millions of reads

For MOST purposes, many cells
(even at lower coverage) provide
best results.

10X chromium is available at
UMGC.

We will focus on droplet-based
techniques today.



Single-cell RNA-seq vs single-nucleus RNA-seq

These methods are NOT equivalent, though the data types produced by them are the same!

Quantity of RNA

Types of RNA

Tissue types &
dissociation

Enrichment/
depletion of cell

types

Single cell RNA-seq

More RNA

All RNAin cell

Dissociation techniques can destroy
fragile cells/not isolate harder to
dissociate cells and/or create stress
responses in cells

Can enrich/deplete cells of interest
using cell surface markers

Single nucleus RNA-seq

Less (only RNA that has been transported
to the nucleus)

RNA from some genes and types of genes
are enriched or depleted in snRNA-seq
studies

Can be used for frozen tissue, cells too
large for the Chromium and tissue that’s
harder to dissociate, though there can still
be biases

Harder to enrich/deplete



Types of single cell ‘omics

Single cell RNA-seq: gene expression



Types of single cell ‘omics

Single cell RNA-seq: gene expression

Expression of cell surface proteins ‘L}*
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https://cite-seq.com/
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Types of single cell ‘omics

Single cell RNA-seq: gene expression
Expression of cell surface proteins
V(D)J: immune cell profiling

ATAC (Assay for Transposase-Accessible Chromatin): chromatin
accessibility



Types of single cell ‘omics

Single cell RNA-seq: gene expression

Expression of cell surface proteins

V(D)J: immune cell profiling

ATAC (Assay for Transposase-Accessible Chromatin): chromatin accessibility

CRISPR guide screen: simultaneously assess CRISPR gene edits and gene
or protein expression
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10x Next GEM Technology for Single Cell Partitioning

O
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10x Barcoded Gel Beads OO

10x Barcoded Gel
Beads are mixed
with cells, enzyme,

I I and partitioning oil

Cells & Oil
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https://www.10xgenomics.com/



Gel Bead-In-Emulsions

(GEMS)
Single cell GEMs undergo RT

10x Next GEM Technology for Single Cell Partitioning
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https://www.10xgenomics.com/



Single Cell 3’ v3 Gel Beads

NOTE: This is an example of the gel bead capture structure for
general explanatory purposes, and represents single-indexed
libraries; UMGC has switched to dual-indexed libraries for gene
expression, V(D)J and feature barcode assays. Check carefully with
UMGC and 10x documentation for the exact structure of the oligos
used for your experiments (which varies and affects processing
steps); the general function is the same!

Each GEM contains a gel bead, and each gel bead is

o S

Single Cell 3'

v3 Gel Bead

covered with oligos.

10X barcode: unique to gel

P 4 bead (i.e. cell-level ID)
- / Poly(dT):
TruSeq — captures poly-A
-l v Y tailed mRNA
Unique Molecular
b |dentifier,

unique to molecule

https://www.10xgenomics.com/



NOTE: This is an example of the gel bead capture structure for
general explanatory purposes, and represents single-indexed
5 ) libraries; UMGC has switched to dual-indexed libraries for gene
S | n g I e Ce | | 3 V3 G e I B e a d S expression, V(D)J and feature barcode assays. Check carefully with
UMGC and 10x documentation for the exact structure of the oligos
used for your experiments (which varies and affects processing
steps); the general function is the same!

Each GEM contains a gel bead, and each gel bead is
covered with oligos.

X Poly(dT):
}«\” TruSeg —— captures poly-A
. : -y o S tailed MRNA
Single Cell 3
v3 Gel Bead
~ \K//
/‘/ y B
- /'/ : The structure of this oligo changes

for non-gene expression assays
(i.,e. V(D)J, CRISPR, ATAC), and
for dual-indexed assays (see
NOTE above).

https://www.10xgenomics.com/
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Expression Library Library Protein Library Library Library

https://lwww.10xgenomics.com/products/single-cell-gene-expression



For single-indexed 3’ gene expression library:

Read 1:
10X barcode (cell-level): 16 bp
UMI (molecule-level): 12 bp

Read 2:
Transcript: 91 bp

Index 1:
i7 index 8 bp

NOTE: This an example only, and
UMGC has switched to dual indexing
(slightly different read format) for gene
expression, V(D)J and feature barcode
libraries). Check carefully!!!

Read 1:28
-

TruSeq Read 1 A Poly(dT)VN

1

Sample
ex

20k - 50k reads per cel

TruSeq Read 2

Read 1 i7 Index

i5 Index

Read 2

Purpose

Length

10x Barcode & UMI  Sample Index

28 8

N/A

0

Transcript

91"




Limitations of the data

RNA handling and library prep — at any level (bulk, single cell, single nucleus) —
are notorious for batch effects

Multiplets and empty droplets

Not all genes are detected:

sparse matrix (cell x gene matrix has a lot of zeros!)



Multiplets TR

o
o

Oll in Well

10x Barcoded
Gel Beads
Cells

Enzyme

Gel
Bead

Gel
Bead

https://kb.10xgenomics.com/hc/en-us/articles/360059124751-Why-is-the-multiplet-rate-different-for-the-Next-GEM-Single-Cell
-3-LT-v3-1-assay-compared-to-other-single-cell-applications-
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Multiplexing samples

The first multiplexing technique is an oligo-tagged antibody method developed by
the NY Genome Center and Satija lab as a method to target cell surface proteins

of interest, and can be used for:

Sample multiplexing (cell hashing): using ubiquitous cell surface proteins

Quantifying protein expression (CITE-seq): using antibodies targeting
cell-type specific cell surface proteins

10X has developed a lipid-based method, 3’ Cellplex



CITE-seq: protein quantification

'Antibody binding,
washing cells

" aCells Qil

Single cell droplet encapsulation :

Oil

'mRNAs and antibody-oligos
hybridize to RT oligos and
are indexed with cell barcodel

https://cite-seq.com/
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Multiplexing samples: cell hashing

Add a different oligo-labeled
A ....|7) antibody (HTO) to each sample,

a > ; then combine

g3 >Z% we

v N

o3| 8 @& =

Cell pooling Library preparation, Analysis &
Samples Label witt & sequencing demultiplexing
hashtag oligos
(HTO) =

Cellplex uses oligo-labeled lipids
(CMOs), but the procedure is the
same

https://cite-seq.com/cell-hashing/

¥




Multiplet-detection with multiplexed samples

Cell loading into GEMs is a Poisson B
2 HTO classification:
prOCGSS S : ® Asinglet
_ o # ® B singlet
The more samples that are multiplexed, ~18 ® AR doublet
the more likely an GEMS with two or a2 |8 ® Negative
more cells contain cells from different OB’
I *
samples. 5 L ,
ol I T
e . N )
Sample-specific labels make detecting iy
these multiplets easy E e
o 4 Neadramades sl P P
This allows more cells to be loaded. 0 2000 4000 6000
HTO A
CTOIn uie oryiridi celnl nasiiy pdaper.

https://genomebiology.biomedcentral.com/track/pdf/10.1
186/s13059-018-1603-1.pdf



Multiplet-detection with multiplexed samples
D HTO tSNE

Sample HTOs or CMOs are produced in a
separately-sequenced library, so are
analyzed separately.

Clustering identifies large clusters
corresponding to the single cells from each
sample; much smaller clusters represent
multiplets containing cells from >1 sample.

Still can’t easily detect multiplets from the
same sample (beyond higher expression),
but the number of these should be low.

From the original cell hashing paper:
https://genomebiology.biomedcentral.com/track/pdf/10.1
186/s13059-018-1603-1.pdf



Library types

Gene expression (3’ or 5’)

HTO/CMO (hash-tag oligos or cell multiplex oligos): Sample multiplexing
ADT (antibody-derived tags): Protein expression

V(D)J: immune cell profiling

ATAC (Assay for Transposase-Accessible Chromatin): chromatin accessibility

CRISPR guide screen: simultaneously assess CRISPR gene edits and gene or protein expression
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g Cell Multiplexi

Targeted Gene  Gene Expression Cell Surface CRISPR
Expression Library Library Protein Library Library

https://www.10xgenomics.com/products/single-cell-gene-expression

Library



Single cell experiments require customized approaches

Single-cell RNA-seq analysis is still largely customized to the individual project

Choices for dissociation techniques, library preparation and sequencing are all influenced by
the types of cells and biological questions — please talk to UMGC about the details!

Experimental design and data analysis also require careful thought, as you'll hear about in
the next sections.

There is a growing list of user-friendly software for analysis, but you need to make thoughtful
decisions at every step of this process that are specific to your analysis and the biological
question you are trying to answer.



Single-cell Experimental
Design and QA/QC

Tom Kono, PhD



Experimental Design is Still Important!

Single cell genomics is relatively new and exciting! It is also (for better or for
worse) a “hot” technique in biomedical research.

A good experimental design will save you a lot of headaches:

e Less time to complete analysis
e More robust analysis
e [ess wasted money and effort!

A good design can be reanalyzed if the initial analysis is done poorly. A poorly
designed experiment is doomed from the start.



General Experimental Design Principles

Hypothesis: a possible (and testable) explanation for a phenomenon. This is the
goal of the experiment - test the hypothesis!

Even in the “novel discovery” phase, there should be some expectation or
predicted outcome that can be measured or observed.

Examples:

Genes that are upregulated under stress relative to benign conditions in lung
tissues are enriched for oncogenic functions.

Progression of a disease is associated with lower chromatin accessibility in
pancreas cells.



General Experimental Design Principles

Replication: Multiple measures (animals
or samples) of the same experimental
condition. Allows estimation of
variability and thus statistical
significance.

Response

Randomization: Assignment of samples
to experimental groups independently
(via random number generator, €.9.).
Ensures that differences are due to
treatment and not “accident.”
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General Experimental Design Principles

Blocking: Organizing samples into
similar groups to reduce error.
Randomize or balance samples across
groups to avoid confounding.

Control. A condition in which the
experimental treatment is not applied,
and used as a comparison to estimate
the effect of the treatment.

.................

' s i 7
+ Technician1 | Technician 2

.................

Saline
Control

................

Drug

Treatment



“Block what you can control, randomize what you cannot.”

Use blocks to make groups of samples where a “nuisance

variable” is constant and the experimental variable is not.
Examples:

e Both female and male subjects in the experimental
groups when sex differences are thought to
contribute to observed response (“sex” is the
blocking factor).

e Subjects of different strains/genotypes in the
experimental groups (“strain” or “genotype” is the
blocking factor)

This is possible for designed experiments! It is more
difficult for clinical or patient samples.

-----------------

Strain 1

..............

-

000

Strain 2

= Treatment




Avoiding “Batch Effects”

. ® LN2
Another term for the systematic effects of Cho,. o RNAlater
. . . o _| 7,
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Passow et al. 2019; https://doi.org/10.1111/1755-0998.12965



https://doi.org/10.1111/1755-0998.12965

Single-cell Considerations: Biological

What types of cells are you interested in studying (and how different are they from
each other)? How abundant are they expected to be in your sample?

Consider: What types of
cells would you to expect
to find in this skin sample?
What is the most common
type? Can you distinguish
them based on gene
expression or epigenetic
profile?

Image source: TCGA



Single-cell Considerations: Biological

Are the cells in your sample challenging to handle (cell walls, irregular shapes,
large variation in size, e.g.)? Are they preserved, or fresh?

Compare epithelial cells
and myocytes in this
colon section.

Will myocytes dissociate
cleanly?

Single-nucleus
sequencing can help
with difficult cell shapes!

Image source: TCGA



Single-cell Considerations: Biological

Are your samples very small (e.g., from young/embryonic individuals)?

If you have very small
samples, you may have to
pool multiples together (tag
them if you can!!)

Be aware of your sample
handling protocols and
avoid batch effects!

(A

Image source: https://doi.org/10.1002/ece3.589 Image source: https://doi.org/10.3390/ijms22105269



https://doi.org/10.1002/ece3.589
https://doi.org/10.3390/ijms22105269

Single-cell Considerations: Technical

How many replicates are you planning to collect?
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Single-Cell Considerations: Technical

How many total cells are you planning to study? Are you studying a rare type?

Percentages of cell types in peripheral blood
versus cervical mononuclear cells

100+

Percentage of mononuclear
cells
o
o
1

Q Q)
‘b Q Q N b. N' O
" © oo'\ P oo 06’ o°CD

Image source: https://doi.org/10.1371/journal.pone.0008293

The expectation is that your sample
will have cells in proportion to their
relative abundance.

Flow sorting can help enrich for
specific types, if they can be tagged!


https://doi.org/10.1371/journal.pone.0008293

A Special Call-out to Cell Tagging (Hashing)

This is coming up multiple times in this tutorial: please use tagging!

-3

oy
Cell pooling Library preparation, Analysis & = ..: 1 '.:. .
SampieE Label with & sequencing demultiplexing oo °.o
hashtag oligos *
(HTO)

Image source: https://cite-seq.com/cell-hashing/



https://cite-seq.com/cell-hashing/

Deciding on Cell Number

Target number of cells depends on the factors we have discussed in the previous
slides! There are some tools to help, though:

e SCOPIT: sample size calculator and power estimation tool
https://alexdavisscs.shinyapps.io/scs_power_multinomial/

e scPower: multi-sample power estimation for scRNAseq:
http://scpower.helmholtz-muenchen.de/

e Tagging cells with oligos for multiplexing:

https://www.10xgenomics.com/blog/answering-your-questions-about-sample-multiplexing-for-single-cell-gene-expression



https://alexdavisscs.shinyapps.io/scs_power_multinomial/
http://scpower.helmholtz-muenchen.de/
https://www.10xgenomics.com/blog/answering-your-questions-about-sample-multiplexing-for-single-cell-gene-expression

Let’s Discuss an Example

Your colleague has skin biopsy samples from patients with an inflammatory
disorder. They would like to study the immune cells that are found at skin lesions.
The rarest type of cell they are interested in sampling occurs at 1% of cells in skin

tissue.

How many cells should they capture if they would like to sample at least 100 of
the rarest cell?

This example is not meant to provide expectations nor recommendations, but to illustrate the ideas of target cell number and batch effects!



Let’s Discuss an Example

Your colleague has skin biopsy samples from patients with an inflammatory
disorder. They would like to study the immune cells that are found at skin lesions.

The rarest type of cell they are interested in sampling occurs at 1% of cells in skin
tissue.

How many cells should they capture if they would like to sample at least 100 of
the rarest cell?

Suppose they want to multiplex 12 patients because the CellPlex reagents support
up to 12 samples. Would this experiment be feasible to run?

This example is not meant to provide expectations nor recommendations, but to illustrate the ideas of target cell number and batch effects!



Let’s Discuss an Example

Your colleague also thinks there will be sex differences in immune cells from the
biopsies, so they sample six female and six male individuals. If up to 8 samples
can be prepared at a time (i.e., in a single batch), how would you advise your
colleague to handle the samples to minimize batch effects?

This example is not meant to provide expectations nor recommendations, but to illustrate the ideas of target cell number and batch effects!



QA/QC of Single-Cell Data

Quality assurance (QA). Techniques and processes that avoid errors and defects
in the data or results. These are usually performed in the sample handling and
data generation steps of the experiment.

Quality control (QC): Techniques and procedures that remove errors and defects
in the data or results. These are usually performed once the data have been
delivered to you, before you begin analysis.



Quality Assurance of Single-cell Data

In brief, use good laboratory technique and sample handling practices! These
somewhat depend on the material and protocol you are working with. But:

e Use the best-quality samples you can get
e Minimize freeze-thaw cycles
e |[solate samples to minimize cross-contamination

On the protocol steps you can, include a “blank” or “control” sample. Note that is
is different from an experimental control!



MiSeq Run vs. Full NovaSeq Run

The UMGC may collect data from a MiSeq run on your sample before running it on the NovaSeq.
These QC metrics are accurate for a shallow sequencing run:

e Valid barcodes
e \Valid UMIs
e Reads mapped to transcriptome

Metrics involving cells (reads in cells, cell numbers, etc) are not accurate at shallow depths.

See article from 10X (also in handout):
https://kb.10xgenomics.com/hc/en-us/articles/360054613831-Can-I-perform-shallow-sequencing-

to-assess-the-quality-of-Single-Cell-3-Gene-Expression-libraries-



https://kb.10xgenomics.com/hc/en-us/articles/360054613831-Can-I-perform-shallow-sequencing-to-assess-the-quality-of-Single-Cell-3-Gene-Expression-libraries-
https://kb.10xgenomics.com/hc/en-us/articles/360054613831-Can-I-perform-shallow-sequencing-to-assess-the-quality-of-Single-Cell-3-Gene-Expression-libraries-

10X QC: Cell Ranger

— Cells
Background

Barcode Rank Plot
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UMI Counts
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1 10 100 1000 10k 100k ™
Barcodes

“Cliff and Toe” plot from Cell
Ranger. Barcodes ranked
from largest UMI count to
smallest along X-axis.

A “good” sample will have a
sharp drop-off between “cells
and “background.”

”

Indicates a clean separation
between cell-containing
droplets and empty droplets.



10X QC: Cell Ranger

— Cells
Barcode Rank Flot Background A “bad” sample will have a
10k smooth drop-off between
’ “cells” and “background.”
1°°‘: Indicates no clear separation
. between cell-containing
*§ 100 droplets and empty droplets.
8 5
s
-
10
1
1 10 100 1000 10k 100k ™

Barcodes



10X QC: Cell Ranger

UMI Counts

— Cells

Barcode Rank Plot Background

1 10 100 1000 10k 100k ™
Barcodes

A “bad” sample can also have
a sharp drop-off, but much
fewer barcodes than
expected.

Indicates many fewer cells
than expected were in the
sample.
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10X QC: After Cell Ranger
How many cells are “dead?”
Look at mitochondrial signal! Dead cells or cellular debris will -

mostly yield mitochondrial sequence.

Remove cells that have a relatively high expression of
mitochondrial genes (scRNAseq) or where most reads come

from the mitochondrial genome (scATAC-seq).




10X QC: After Cell Ranger

How many cells are “empty?”

Look at the number of genes detected per-cell. Empty
reaction vessels will yield very small quantities of

sequencing reads or yield mostly non-biological sequences.

Remove cells that have very low gene expression overall
(scRNAseq) or very low mapping rate to genome
(scATAC-seq).

nFeature RNA

3000 -




10X QC: After Cell Ranger

How many of my cells are “multiplets?”

Look at number of genes detected per-cell*, too! Multiplets
will have an unusually high number of expressed genes or

quantity of sequencing data.

Remove cells that have very high gene expression overall
(scRNAseq) or very high sequencing yield relative to the
other cells (scATAC-seq).

If you have tagged your cells, you can look at the distribution
of cell hash tags, too.

*: If your data are hash-tagged, there are other explicit methods to identify multiples. Stay tuned!

nFeature RNA

2000 -

1000 -




10X QC: After Cell Ranger

UMI counts plots from Seurat.

Cells should have a high UMI
count.

Indicates that each cell had
sufficient tagging of unique
transcripts/fragments.

20000 -
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UMI count

wild-type stress

Data from https://doi.org/10.1016/j.devcel.2021.03.018



https://doi.org/10.1016/j.devcel.2021.03.018

10X QC: After Cell Ranger

Gene counts plots from
Seurat.

Cells should have a high*
gene count.

Indicates that each cell had a
broad sampling of genes that

it is expressing, and not dead.

*: depending on the types of cells!
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Data from https://doi.org/10.1016/j.devcel.2021.03.018



https://doi.org/10.1016/j.devcel.2021.03.018

“So, are my data good? Or, are they bad?”

Depends on the biology of the study system and the hypotheses being tested!
Single-cell methods are not as codified as other fields of genomics.

But, there are a few general metrics that apply to all single-cell datasets:

e There should be few “dead,” “empty,” or “multiplet” cells.

e All of your hash tags should be detected, and they should have relative
abundances proportional to their input.

e The cell count should be as close to your expected input number as possible.

e Most of your reads should map to the genome or transcriptome.



“So, are my data good? Or, are they bad?”

For scientific purposes, it is harder to call a dataset “good” or “bad.”

Instead, ask:

e Do you see the patterns of gene expression or sequencing coverage that you
would expect from the input material?
e Do the cell types you identify align with expectations based on the input

material?
e Are the genes or genomic regions of interest covered by the sequencing

data?

These are based on your hypotheses!



Software Tools for Analyses
Adam Herman, PhD



Color key

Srun

(interactive mode)

sbatch

(batch mode)




Color key

[10:08:17 1 [aherman@ln0004] (~) $ srun --nodes=1 --ntasks-per-node=24 --cp
us-per-task=1 --time=03:00:00 --mem=50GB --partition=interactive --account=riss
--x11 --pty bash
Srun srun: job 146726397 queued and waiting for resources
srun: job 146726397 has been allocated resources
(interactive mode) [10:08:48 1 [aherman@acnl7] (~) $

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=64

#SBATCH --cpus-per-task=1
--time=6:00:00
--mem=600GB
--account=riss

--mail-type=ALL 112 n@ln0OO4] (~) $ sbatch cr_example.slu
--mail-type=END
S a C --mail-user=aherman@umn.edu

--partition=ag2tb
(batch mOde) -0 "run_cr_small-%j.out"

-e "run_cr_small-%j.err"

module load umgc
module load cellranger/6.0.0




Workflow overview

reads ——> counts =——=> summaries =——> analyses =—=>sharing



-

\_

cellranger

~

/

kallisto | bustools

From reads to counts

Used the most by far

Can count GEX, HTO, ADT, VDJ, ATAC at once

EXTREMELY FAST

Counting of HTO needs to be done with other software



From reads to counts

cr_run

Summary Analysis

cellranger 27,871 cells @

Estimated Number of Cells Barcode Rank Plot

— Cells
10k Background
50,090 1,930
Mean Reads per Cell Median Genes per Cell §
= 100
=
=)
10
Sequencing @
1
Number of Reads 1,396,068,925 1 100 10k M
Number of Short Reads Skipped 0 Barcodes
Valid Barcodes 96.3% Estimated Number of Cells 27,87
kal | i Sto | b u StOO | S Valid UMl 99.9% Fraction Reads in Cells 94.0%
Sequencing Saturation 78.2% Mean Reads per Cell 50,090
Q30:Basesiin Barcode 96.4% Median Genes per Cell 1,930
430, Basestin RNARead 94.9% Total Genes Detected 23,317
Q30 Bases in UMI 95.8%

Median UMI Counts per Cell 5,321



From counts to clean data

Like cellranger, the most commonly used (in RIS!)
Seurat J

Very good vignettes

More software-principles oriented

sleilnledy In my experience, a bit more efficient in terms of speed and

memory



From counts to clean data

Seurat

There is no right answer here
Do you like R or Python

Regardless, there’s some prep you’re going to need to do

scanpy



From counts to clean data

X-forwarding (Windows, Mac)

Seurat
Local package installs (CRAN, Bioconductor)

notebooks.msi.umn.edu

scanpy conda environments



https://www.msi.umn.edu/support/faq/how-do-i-configure-putty-connect-msi-unix-systems
https://youtu.be/jWOebw4VF1Y
http://notebooks.msi.umn.edu
https://github.umn.edu/MSI-RIS/scrna_notebooks

Seurat
Slingshot

Monocle

scanpy
scvi-tools

scVelo

From clean data to whatever you like!

Seurat and scanpy have absorbed many functions
There may or may not be some degree of wrangling involved

While errors are frustrating, beware some just working



Seurat
Slingshot

Monocle

scanpy
scvi-tools

scVelo

From clean data to whatever you like!

More R package installation

More conda installation



Sharing your data

VISION
Rmarkdown / \
Gene
Expression
Omnibus
GEO
Jupyter \ /

notebooks



Sharing your data

VISION
Rmarkdown In my experience VISION is the most useful collaboration tool
Rmarkdown is super for reports
Jupyter notebooks are great for sharing
Jupyter

notebooks



Sharing your data

4 A

You'll need to adjust your conception of your experiment
Gene
It's not awfully painful, though! Expression
_ Omnibus
See here for a great overview (GEO)

\_ /



https://pages.github.umn.edu/MSI-RIS/Tutorials/rnaseq_cmd/#S8

Single-cell Analysis

Showcase
Marissa Macchietto, PhD



Why single-cell analysis?

e Bulk methods average cell profiles in a sample. Often, this is a good first step
to finding markers of interest

e In certain experiments, bulk RNA-seq methods can be problematic (due to
signal masking or can cause difficulty in interpreting results). A few examples
include when:

o The samples are very heterogeneous (e.g. tumor)
o Atreatment affects a rare cell population in your sample
o Sample cell compositions change as a result of treatment



Why single-cell analysis?

e Provides detailed information about individual cells
(gene expression, chromatin accessibility, SNPs, copy number variation, protein
expression, etc)

e Allows us to study cellular heterogeneity

This can help us:
e discover new cell types/states
e uncover mechanisms of action for drugs (when they target a particular cell type)
e Dbetter predict how a disease will evolve (e.g. tumor cells acquiring new phenotypes)
e uncover novel enhancers and promoters + characterize regulatory networks



Outline of Topics

Clustering and Cell Typing General Single Cell Analysis
Differential Feature Identification
VISION

Single-cell Data Set Integration (Batch correction, Multimodal Data)
CITE-seq

VDJ Analysis

Trajectory Inference (Pseudotime, RNA velocity)

inferCNV



Outline of Topics

Clustering and Cell Typing
Differential Feature Identification
VISION

Single-cell Data Set Integration (Batch correction, Multimodal Data)

CITE-seq Multi Sample/ Mulitimodal

VDJ Analysis
Trajectory Inference (Pseudotime, RNA velocity)

inferCNV




Outline of Topics

Clustering and Cell Typing

Differential Feature ldentification

VISION

Single-cell Data Set Integration (Batch correction, Multimodal Data)

CITE-seq

VDJ Analysis Specific use cases
Trajectory Inference (Pseudotime, RNA velocity)

inferCNV




General Single-Cell Analysis Steps

Remove low quality cells (very low feature counts, high mitochondrial content,

multiplets)
Normalize feature expression
Find variable features

Reduce data set dimensionality (i.e. PCA, UMAP) using variable features
Find nearest cell neighbors (i.e. SNN graph construction)

v

Cell clusters

> Differential Feature Expression



20 1

101

UMAP_2

Cell Clustering

PBMCs (from a patient’s serum)
clustered on transcriptomes using
Seurat R package

Visualize cell clustering results on
nonlinear dimensional reduction plot
(UMAP or tSNE)

;'Es@.ﬁ,i
0 0000 OCGCOGEOEOEOOTOSO
©CoOoONOOOTA,WN-—=-O




20 1

101

UMAP_2

Cell Clustering

PBMCs (from a patient’s serum)
clustered on transcriptomes using
Seurat R package

Visualize cell clustering results on
nonlinear dimensional reduction plot
(UMAP or tSNE)

0 0000OCGCOOOOGOEOSOO
©CoOoONOOOAhWN—=-O

% Do not be tempted to read too much
into cell or cluster distances on this
plot — it may not mean anything due

o ; to non-linear representation!



Cell Clustering

UMAP_2

UMAP 2
o

§ Resolution=0.3

Y
N o awn o
UMAP 2

Resolutlon 0 6

UMAPl

Y
UMAP_2

i Resolution=0.4

UMAP 1

Resolutlon 0 7

5
UMAP_1

»
UMAP_2

UMAP_2

i Resolution=0.5

UMAP 1

Resolutlon 0 8

4
X
. o o ./
&
o

=
UMAP_1

Clustering resolutions are
adjustable

Adjust resolution to
achieve clustering results
that make sense for your
experimental objectives



How do | adjust the clustering resolution to get the most
accurate result?



Manual Cell Type Annotations

CD14
e Use known marker genes .
0 1
-10 1
—20 - v . .
-15 -10 -5 0

o =N @

UMAP_1



Manual Cell Type Annotations

Use known marker genes

Use PCA loadings

PC_1

PC_4

PC_2

JALAT1

D69

D27
ICHAIN

QP3

NFRSF17
CD79A

LEC7A
D36

LF4
ERPINA1
100A8
ST3

YZ

CN1

PC_5

VCAN

CD36
AM198B
HSP
LDH1A1

AC245128.3
INASE2
DGRE2
MIM25
PP1R17
EACAM3
1QB
INC02345
ES4
DKN1C

PC_6

Al
LAS2
ELENBP1
BM
YL4
BB
BA2
UNB
CTG1
GB1
RIP1
H3BGRL3
CTB
T-CO3
ALAT1




Manual Cell Type Annotations

PC_1 PC_2
e Use known marker genes owa
e Use PCA loadings
e Use Differentially Expressed |
Genes/ Features o

ST3

PC_4 PC_5 PC_6

All of these can help us distinguish cell o
types! el e

MIM25 CTG1
PP1R17 GB1
EACAM3 RIP1

1QB H3BGRL3
INC02345 CTB

ES4 T-CO3
DKN1C ALAT1




UMAP_2

Differentially Expressed Feature (Gene) Analysis

How is the yellow-green cluster different from all

201 of the other cells?

104

0 000O0OCOGDOGEOGCEOSEOSOS
- - 2 OO NOOUOBRWN-=O

N = O

UMAP_1



UMAP_2

Differentially Expressed Gene Analysis

How is the yellow-green cluster different from all
of the other cells?

20 1

104

o000 0O0GDOCGCOOOS
N WN=O

° 10 This could help us determine that the
identity of yellow-green cluster is
monocyte-like

e e
_ -
N -




How do | adjust the clustering resolution to get the most
accurate result?

e Use the Clustree R package (https://github.com/lazappi/clustree) to iterate
through resolutions and find stable clustering solutions using fun, tree
visualizations



https://github.com/lazappi/clustree
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Clustree R package

e (Can produce tree visualizations

that show cell cluster
compositions at different cluster
resolutions

Can easily add right into your
single-cell pipeline — uses
Seurat or
SingleCellExperiment objects



How do | adjust the clustering resolution to get the most
accurate result?

e Use the Clustree R package (https://github.com/lazappi/clustree) to iterate
through resolutions and find stable clustering solutions using fun, tree
visualizations

e Use an automated single-cell annotation tool that will annotate individuals
cells against a reference RNA-seq databases (e.g. SingleR R package or
CHETAH R package)


https://github.com/lazappi/clustree

Automated Cell Type Classification

Many tools available for annotating cell identities and come in different types:



Automated Cell Type Classification

Many tools available for annotating cell identities and come in different types:

e Reference-based: Uses RNA-seq reference datasets
m SingleR
m CHETAH

e Marker-gene based: Uses marker gene lists to probabilistically
assign cell types
m Cellassign



Automated Cell Type Classification

Many tools available for annotating cell identities and come in different types:

e Reference-based: Uses RNA-seq reference datasets
m SingleR
m CHETAH

e Marker-gene based: Uses marker gene lists to probabilistically
assign cell types
m Cellassign



Reference-based Cell Type Classification

6 Different Clustering Resolutions: Tool: SingleR

Reference: Blueprint + ENCODE (bulk

UMAP_2

UMAP_2

., Resolution=0.3
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Reference-based Cell Type Classification

6 Different Clustering Resolutions: Tool: SingleR
Reference: Blueprint + ENCODE (bulk

UMAP_2

-15

UMAP_2

. Resolution=0.3 . Resolution=0.4 ., Resolution=0.5 RNA-seq)
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Cell type mislabeling

e Labeled individual cells of an
ovarian tumor with SingleR tool
" using BluePrint+ ENCODE as a
E; ' poaes reference

CD4+ T-cells . . . L1]
D8+ T-cals e “Ovarian tumor epithelial cells
Endothelial cells .

Epithelial coll are not in the reference

Erythrocytes
Fibroblasts
HSC
Keratinocytes
Macrophages
Mesangial cells

101

UMAP_2
o

Good example of cell type
NK cells mislabeling!

o
"L%
P00 SOOI OOIOONOGOEOONOSOIPOSPOTS

~104 Tu Q These are cells of the kidney. They
shouldn’t be in the ovary!

-10 -5 10



What if | am interested in CD14+ and CD16+ monocytes?

UMAP_2

Resolution=0.3 ., Resolution=0.4 ., Resolution=0.5
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What if | am interested in CD14+ and CD16+ monocytes?

Resolution = 0.8
101 >
monocytes How is the blue monocyte cluster (10) different
@ from green monocyte cluster (4)?
B AG P ®0
o .
® 4
o~ e 5
o *6
: |- ¥
® 9 .
o B e DEG analysis
& o
® 14
Note: Ideally, it would be great to have > 100
&5 cells in a cluster for proper DEG comparisons
’\""" ' because of the signal dropout that happens a
-15 -10 -5 0 5 . .
UMAP_1 lot with single-cell data




What if | am interested in CD14+ and CD16+ monocytes?

CD14 FCGR3A Look at DEG marker genes to
10 10 distinguish the two subtypes

- a
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VISION

VISION - CiteSeq

cell v Cell Meta Genes

> & & 85
N3 E
§ §35g83
Filter Signatures.. § 88 &
Fiter S8 & 888888
» T cells CDB (CS) =] T+ =
» TCELL up (Nov) BT 1]
T cells CD4 memory restin
&) WIS HI“
> GMP_up (Nov) [Co7s ™ * T+ T* T&[=]

————————
Signature Heatmap

T cells CD8 (CS)

200}

0

T cells CD8 (CS)

Projection: | tSNE30

40

-20

-40

https://github.com/YosefLab/VISION

Export

6000

5000

4000

3000

2000

1000

webapp for exploring gene
signatures in scRNA-seq data

Load data from scRNA-seq
analysis (precomputed
dimensionality reductions,
clustering, trajectory inference)

Share easily with collaborators

To see all of what VISION has to
offer:
https://github.com/YosefLab/VISI
ON

(“Tour of the output report user
interface (PDF)”)



https://github.com/YosefLab/VISION
https://github.com/YosefLab/VISION

10X Cellranger ATAC Analysis

10X single cell
ATAC fastqgs

cellranger-atac c

(10X software)

/

0O O 0O O O O o o o

Read filtering and alignment

Barcode counting

|dentification of transposase cut sites

Detection of accessible chromatin peaks

Cell calling

Count matrix generation for peaks and transcription factors
Dimensionality reduction

Cell clustering

Cluster differential accessibility



https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count

Loupe Browser for Visualization of 10X Cellranger ATAC
Data

® 3 Loupe Browser 4.0.0 - ATACTutorial
 EE st il | "1>] Interactive desktop application for
Graph-Based Tl Windows and MacOS designed for
quick visualization of 10X data (either
: Cluster 2 ATAC or RNA)
o R 'I: Cluster 3
Q 4 . Cluster 4
|2 2 Cluster 5 Browser uses “.loupe” file created by
(& | st Cellranger run
B 4 Cluster 7
? 87M 87.01M 87.02M 87.03M 87.04M Cluster 8 . . o
? o _RMNDSA > - COBA ’ <cpss___ Genes Cluster 9 Can be Used tO flnd Slgnlflcant Open
al | 3 e Cllstar. 18 chromatin regions and transcription
d & gl Cluster 11 . . .
o oo Ccter 12 factor motifs, identify and compare cell
1 3 . Custers Cluster 13 types, and explore substructure
=] ¢ usero | | Globaty Distinguishing  + Export tables/screenshots for sharing
Lo g b | pr—
= e - Cluster 13 Motif v




Multisample/ multimodal data



Single-cell Data Set Integration

e |s a batch correction technique you can use to combine and compare data

sets from different:
o Subjects
Conditions (Sick vs Healthy, Treated vs Untreated)
Technologies (e.g. 10X, Fluidigm, Dropseq, CEL-seq)
Functional genomics profiles (e.g. RNA-seq, ATAC-seq, methylation, spatial RNA)
Species

o O O O

Vignette:
https://satijalab.org/seurat/articles/integration_introduction.html



Example 1: Integration of single-cell RNA-seq samples
from multiple 10X Captures

Before integration After integration
151

101

104

-10 5 0 5 n~



Can perform DEG analysis on integrated data now

Day 0 - Control Day 14 - Control Day 0 - Treated Day 14 - Treated



Can perform DEG analysis on integrated data now

Day 0 - Control Day 14 - Control Day 0 - Treated Day 14 - Treated

|\ J |\ J
Y Y

DEGs in control patients over time DEGs in in treated patients over time




Instead of integrating data, it would be better to design the
experiment to use CITE-seq!

Stands for “Cellular Indexing of Transcriptomes
and Epitopes by Sequencing”

e an: N f N ssloygp-y v AAAAAAAAAAAAAAAAAAAAA

Method that allows you to perform RNA-seq + quantify surface protein marker



Instead of integrating data, it would be better to design the
experiment to use CITE-seq!

Stands for “Cellular Indexing of Transcriptomes

RAAAN

e an: N f N ssloygp-y v AAAAAAAAAAAAAAAAAAAAA

U and Epitopes by Sequencing”

Method that allows you to perform RNA-seq + quantify surface protein marker



CITE-seq - “cell hashing” (HTO library)

A way to label cells from different samples, so they can be pooled, prepped, and

sequenced together.

N

% ol
a
L)
g e R
c AAALAAA
@
@ > \ © W e
ee— e ...
Cell pooling Library preparation, Analysis & '..' - ; R

Samples Label with & sequencing demultiplexing :' . o..
hashtag oligos
(HTO)




_ _ e Multiplets become an issue in super-loaded 10X runs
Multiplet detection (> 20k cells)
e Tools like GMM Demux can identify multiplets in
single-cell CITE-seq (“cell hashing”) data for removal

A

() vcen WTO4 ([ Ji Samplet T-Coll () sample2vCol

. B-Cell HTD-2
‘ Sample-1 B-Cell ' Sample-2 B-Cell

SSM Singlet

Pure-Type GEMs

Phony-Type GEMs ‘ . N/A

-

Xin et al. 2020



e Multiplets become an issue in super-loaded 10X runs

Multiplet detection (> 20k cells)

e Tools like GMM Demux can identify multiplets in
single-cell CITE-seq (“cell hashing”) data for removal

WTO4 [  J) Sample:t TCol () sample2 col

HTO-2 . htol

‘ Sample-1 B-Cell

Sample-2 B-Cell

] ] MSM
MSM : SSM > Singlet
J 1
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e Multiplets become an issue in super-loaded 10X runs

Multiplet detection (> 20k cells)

e Tools like GMM Demux can identify multiplets in
single-cell CITE-seq (“cell hashing”) data for removal

WTO4 [  J) Sample:t TCol () sample2 col

HTD-2 . htol
‘ Sample-1 B-Cell

SSM

Sample-2 B-Cell

multiplets

Pure-Type GEMs

Phony-Type GEMs ‘ Z' N/A

-

Xin et al. 2020



Example of Data Set Tagged with CD19 (ADT library)

10 1

UMAP 2

-10 1

-15 A

ADT Assay

CD19 protein

-10

UMAP_1

10

10+

- N w
UMAP 2

-10 -

-15 -

RNA Assay
CD19 RNA
I :
-
o 0
-10 0 10
UMAP_1

From: https://satijalab.org/seurat/articles/multimodal_vignette.html



Software for specific use cases



Variable-Diversity-Joining (VDJ) Analysis

Use case: Immune cell (T-cell and B-cells) profiling!



Variable-Diversity-Joining (VDJ) Analysis

germline

DNA
x21-22

TCRpB chain

Somatic

N T-cell receptor
recombination P

rearranged CDR3
DNA s |
Y’ Transcription } Variable
Splicing region
Constant
i region
Translation
e - |
5'RACE : B
Genomic segments:
B Leading peptide Il variable B Diversity Joining B constant

T-cell and B-cells undergo
recombination of their
somatic genomes at T-cell
and B-cell receptor loci

These regions can be
sequenced to determine
which genome segments
were recombined to
produce the final receptor
chains — “immune
profiling”

Courtesy of Todd Knutson



VDJ analysis with 10X Genomics “cellranger vdj”

Example output:

A B C D
1 |clonotype_id lfrequency proportion cdr3s_aa
2 clonotypel 182 0.015041322 TRB:CASSYTGNEQYF;TRA:CAMVGSAGNKLTF
| 3 clonotype2 31 0.002561983 TRB:CASPWDRYNSPLYF, TRB:CASSDEGGQONTLYF;TRA:CATDENNTGKLTF
4 clonotype3 29  0.0023566594 TRB:CASSGQGAGEQYF;TRA:CAIVAPGGSNAKLTF
[ 5 clonotype4d 25  0.002396694 TRB:CASSLRQSSYEQYF,TRA:CALRWDAGAKLTF
6 clonotype5 24 0.001983471 TRB:CASSLGYNSPLYF;TRA:CAAASSGSWAQLIF
7 | clonotype6 20 0.001652893 TRB:CASSGTAETLYF;TRA:CALSEGTNAYKVIF
8 clonotype?7 20 0.001652893 TRB:CASGETLYF;TRA:CAAEANQGGRALIF
. 9 clonotype8 19 0.001570248 TRB:CTCSADSSSQNTLYF;TRA:CAVRNQGGRALIF
, 10 clonotype9 17  0.001404959 TRB:CASSLGLGGQEQYF,TRA:CAIERTNAYKVIF, TRA:CAVRTGFASALTF
|11 clonotypel0 17  0.001404959 TRB:CASSIKGSGNTLYF;TRA:CAAVRTGGNNKLTF
12 clonotypell 15 0.001239669 TRB:CASSLGLGYYEQYF;TRA:CALSSTEGADRLTF

Courtesy of Todd Knutson



Trajectory Inference Analysis (aka Pseudotime)

e Method for extracting temporal
information from a (static)

1 I
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o  Cell differentiation

o Embryonic development
o  Cell Treatment

o  Cell polarization



Trajectory Inference Analysis (aka Pseudotime)

e Method for extracting temporal
information from a (static)
single-cell sample by ordering cells
along a uni-dimensional trajectory

e Type of data sets that they can be

used on:
o  Cell differentiation
o Embryonic development
o  Cell Treatment
o  Cell polarization
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Trajectory Inference Analysis (aka Pseudotime)

e Software tools will apply

pseudotime trajectory (thick line)
over existing visualizations

-5.0 ~

-7.5 -

Component 1

-10.0 -

=125 =

Component 2



Trajectory Inference Analysis (aka Pseudotime)

Component 1

-

-7.5 -

=125 =

Component 2

Software tools will apply

pseudotime trajectory (thick line)
over existing visualizations

Can compare cell clusters along the
trajectory to determine genes that
change over pseudotime



Monocle 3 Pseudotime Analysis Example

pseudotime
PC3 L G ————————
4 Celltyp
s ot
2 HB
GBX
HBC ol
INP2 2 fon
= g « Hn
' INP3
! P 4 ® n
e 3
C
CD
iSUS, PC1
‘ Neurona
‘ Mv2 lif&anE
Microvillous e
lineage
mSuUs
Sustentacular
lineage

PC2

Mouse olfactory epithelium
(Software: Monocle 3)

Van den Berge et al., 2020



Monocle 3 Pseudotime Analysis Example

pseudotime
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Pseudotime Software

Some software tools can handle cyclical
and disconnected trajectories

Graph methods
PAGA
RacelD / StemiD

Tree methods
Slingshot
PAGA Tres
MST
pCreode
SCUBA
Monocle DDRTree
Menocle ICA
celTree maptpx
SLICE
cedTree VEM
EIPiGraph
Sincall
URD
CellTralls.
Mpath
CollRouter

Multifurcation methods
STEMNET
FatelD
MFA
GPfates

Bifurcabion methods
DPT
Wishbone

Linear methods
SCORPIUS
Comganent 1
Embedadr
MATCHER
TSCAN
Wanderiust
PhencPath
topslam
Watertall
EIPiGraph linsar
ouijaflow
FORKS

Cyclic methods
Angle
EIPiGraph cycle
raCAT

Woi&»‘pﬁwwxﬁof‘&wo@ W"" wa"@ﬁ ’@N

Direct R Free -~
x  Direct Python Free _~ -

Inferrable trajectory types

Aggregated scores per experiment

Proj Python Free - .
Cluster Python Free
Cel R Froo -
X Cell R Param
Cell R Free
Direct R Fres
Cell R Free
Direct R Free
Cell R Fres
X Diret R Free
Cell R Free
% Clustor R Fres
x  Cell R Free
® Pob R Paam . - -
X Prob R Param . e
X Prod R Paam - .
X Prob Python Param - .

Direct
x  Direct

Linear
Linear

R thd".." —

Python Param _~ .

R Fixed
R Fixed -~ .

Unear R Fixed =
Linear Python Fixed -~
Unear R Fixed < .
X Linear Python Fixed
Uinear R Fixed < .
X Linear Python Fixed < -
Unear R Fixed
Direct R Fixed - -

X Weak: Start or end cells
%= Strong: Cell grouping or time course

Not shown, Insufficient data points

CAUISTA ouija
celiTree Gibbs  pseudogp
GrandPrix SCIMITAR

MERLOT sScouP

11
Saelens et al. 2019



RNA Velocity

e Uses transcript splicing rates of genes as a way to predict a cell’s fate (on a short time scale)



RNA Velocity

e Uses transcript splicing rates of genes as a way to predict a cell’s fate (on a short time scale)

CA3 CA2/4

| ERE

Neuroblast

Radial .
glia

N

~ Granule

La Manno et al., 2018



RNA Velocity

Use case: to determine if a gene of interest is being induced or repressed in a cell population of

interest

CA3 CA2/4

| ERE

Neuroblast |

Radial |
glia

-t

La Manno et al., 2018



Copy Number Detection in Single-cell RNA-seq Data

inferCNV

Infers copy number variations by exploring
gene expression intensities across positions
of the genome in “abnormal” cells and
comparing them to “normal” cells

References (Cells)

Use case: tumor single-cell RNA-seq sample

Tools: InferCNV, Casper, Copykat
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https://github.com/broadinstitute/inferCNV
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Differentially Expressed Gene Analysis

|deally, it would be great to have > 100 cells in a cluster for proper DEG
comparisons because of the signal dropout that happens a lot with single-cell data

Side note: When designing an experiment, it is good to think about how many cells
will be acquired, how many will be lost through filtering, and how many cells of
your cell types of interest you expect to have at the end for DEG analysis. If you
predict too few, you may want to reconsider your experimental design (maybe
perform cell sorting to enrich for populations of interest?)



RNA Velocity

*~23% of UMlIs are from unspliced molecules (Le Manno et al., 2018)

DNA

transcription
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® Adapted from Khanacademy.org



RNA Velocity Model
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RNA Velocity Software

Velocyto (La Manno et al. 2018)
* Implemented in R and python
* Uses BAM files generated from Cellranger (10X Genomics)
* Uses uniquely mapped reads (multimapping and reads in repeat-masked regions are discarded).
Assumes splicing rate = 1 for all genes/all cells

scVelo (newer - 2020)
* Install for Python 3.6 with Pypi
* Input for scVelo:
* Counts matrix of unspliced pre-mature mRNA abundances
* Counts matrix of spliced mature mRNA abundance
* Both can be produced with loompy/kallisto pipeline or velocyte
* Estimates betas (splicing rates) and gammas (degradation rates) for each gene



Reference-based Cell Type Classification

SingleR/Cheetah

e Performs Spearman rank correlation of individual single cells (or cell clusters) against samples in a
reference bulk RNA-seq, single-cell RNA-seq, or microarray database (correlations are done using variable

single-cell genes)
e Performs filtering to get the most accurate cell type calls

IMPORTANT NOTES:

e Be aware of the cell types in the reference data; the reference may not contain all of the
cell types in your query dataset

e Some classification tools (e.g. SingleR) force cell type annotation labels onto cells. If a cell
type in your query data set is not in the reference, it will still be annotated with the best
match. So need to be careful not to take the results at face value. Other tools (CHETAH)
can annotate with “in-between” cell type labels if it cannot place it



Integration of Pancreas Data Sets

8 pancreas data sets: CELseq, CELseq2, FluidigmC1, SMARTseq2, InDrop#1, InDrop#2, InDrop#3, InDrop#4

60 Unintegrated 50
% Baron et al. 2016, Call Syst.
' Lawior et al. 2017, Genome Res.
Grun et al. 2016, Cell Stem Cel
301 251 Muraro et al. 2016, Cell Syst.
Nl Nl
Z o0 z ]
7] 2}
30 1 251
-50 1
-60 -30 0 30 -50 25 1] 25 50
ISNE_1 {SNE_1 4

30+ clusters ~9 clusters Adapted from Ahmed Mahfuoz



Single-Cell Data Set Integration (Using Seurat)

B Cc

Data set 2

o & “ Data set 2

» Canonical Correlation
& Analysis

A%
» o
e B
e 3

L

o
.\'
B AT}
% N
2
/

Identify

—_

L2-norm
&

‘anchors’ } Jl\
o LAY
.- ‘ A Pras
R R .
e

d
»
“ & Data set 1 @ ®
i R &
‘.‘ 1 |




Single-Cell Data Set Integration (Using Seurat)
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Single-Cell Data Set Integration (Using Seurat)

Nearest
in batch 2

Nearest
in batch 1

Haghverdi et al 2018; https://www.nature.com/articles/nbt.4091.pdf



Single-Cell Data Set Integration (Using Seurat)
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Haghverdi et al 2018; https.//www.nature.com/articles/nbt.4091.pdf



Single-Cell Data Set Integration (Using Seurat)
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Haghverdi et al 2018; https://www.nature.com/articles/nbt.4091.pdf



What if | spent hours delineating cell clusters and their
identities in a single sample? Will | have to do that for all of
the samples like it?

/ \ You could also use the integration
/ | \\ Reference technique to transfer cell type labels
/ \ from a reference data set to a query
/ \ data set!
: ' ;—:‘ Use “integration” as a cell type
| classification method.
- § ® | Query

Always good to double-check your
results.




Example 1: Integration of single-cell RNA-seq samples
from multiple 10X Captures

16 samples (separate 10X captures)
Before integration

154 if 154 ~68K cells g
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atacUMAP_2

Example 2: Integration of RNA and ATAC single-cell data

RNA
151
: Plasma
Interws
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5 < .
orig.ident seurat_annotations
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_5 4
-10- 0
pbC N
HSPC &
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UMAP_1
ATAC . .
integration -1
101 5
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-5
-10-
v
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CD14 Mono
CD16 Mono
CD4 Naive
CD4 TCM
CD4 TEM
CD8 Naive
CD8 TEM_1
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cbC
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HSPC
Intermediate B
MAIT
Memory B
Naive B

NK

pDC
Plasma
Treg

atacUMAP_1 https://satijalab.org/seurat/articles/atacseq_integration_vignette.html



VDJ Analysis (Multimodal Data)

VDJ libraries will tell us information about the type of T-cell or B-cell receptor
a cell has (clone)

Then, we can use GEX libraries to tell us what those T-cells are doing
transcriptionally and ADT libraries can help us confirm expression of proteins
on their cell surfaces

Using these complimentary data sets (via CITE-seq) will allow us to study
immune cell clonotypes in greater depth through their normal development
and disease progression

Courtesy of Todd Knutson



VDJ analysis with 10X Genomics “cellranger vdj”

Performs four steps:

1) Assembly

2) VDJ calling (B-cell or T-cell)

3) Annotation of contigs with VDJ segments and locates CDR3 region
4) Clonotype grouping

Courtesy of Todd Knutson



VDJ analysis with 10X Genomics “cellranger vdj”

Analysis step one: cellranger vdj

A B C D
output files- 1 |c|onotvpe_id .lfrequency proportion cdr3s_aa
" 2 | clonotypel 182  0.015041322 TRB:CASSYTGNEQYF;TRA:CAMVGSAGNKLTF
Annotation Files | 3 | clonotype2 31 0.002561983 TRB:CASPWDRYNSPLYF;TRB:CASSDEGGQNTLYF;TRA:CATDENNTGKLTF
4 clonotype3 23 0.002396694 TRB:CASSGQGAGEQYF;TRA:CAIVAPGGSNAKLTF
{ 5 |clonotyped 29  0.002396694 TRB:CASSLRQSSYEQYF;TRA:CALRWDAGAKLTF
File Description 6 clonotypeS 24 0.001983471 TRB:CASSLGYNSPLYF;TRA:CAAASSGSWQLIF
e T e de e ntone BT et donctye. 7 | clonotype 20 0.001652893 TRB:CASSGTAETLYF;TRA:CALSEGTNAYKVIF
8 |clonotype7 20 0.001652893 TRB:CASGETLYF,TRA:CAAEANQGGRALIF
ROTenss TPt iore Ty High-level and detailed annotations of each clonotype consensus 9 clonotype8 19 0.001570248 TRB:CTCSADSSSQNTLYF;TRA:CAVRNQGGRALIF
SEqUEDCE, 1 10 clonotypes 17  0.001404959 TRB:CASSLGLGGQEQYF;TRA:CAIERTNAYKVIF;TRA:CAVRTGFASALTF
Sltered cortt High-level annotations of each high-confidence, cellular contig. This is a 11  clonotype10 17 0.001404959 TRB:CASSIKGSGNTLYF;TRA:CAAVRTGGNNKLTF
IARERY. CONRE MMICBURIS AR | oot oF »11. roatia seictat ionsaray: 12 clonotypell 15 0.001239669 TRB:CASSLGLGYYEQYF;TRA:CALSSTEGADRLTF
Eliconus Apoossos High-level and detailed annotations of each contig.
{csv,bed,json}
Al TesrranRementisy Annotated contigs and consensus sequences of VD) rearr
= 8 : the AIRR format.
A B C D E F G H I 1 K L M N o P Q R S
1 |barcode _is_cell contig_id  high_confide length chain v_gene d_gene j_gene c_gene full_length productive fwrl fwrl_nt cdrl cdrl_nt fwr2 fwr2_nt cdr2 cdr2,
2 AAACCTGAG  TRUE AAACCTGAG  TRUE 540 TRB TRBV13-3 TRBJ2-7 TRBC2 TRUE TRUE EAAVTQSPR! GAGGCTGCA NNHDY AATAACCAT( MYWYRQDT ATGTACTGG SYVADS Tcal
| 3 AAACCTGAG  TRUE AAACCTGAG  TRUE 606 TRB TRBV30 TRBD1 TRBJ2-3 TRBC2 TRUE TRUE SVLLYQKPNR AGTGTCCTC(SQVVS AGTCAAGTT MFWYQQFQATGTTTTGG ANEGSEA  GCAs
4 AAACCTGAG TRUE  AAACCTGAG  TRUE 606 TRA TRAV14D-3-DV8 TRAJ32 TRAC TRUE TRUE QQQVRQSPC CAGCAGCAG NSAFDY AACAGTGCT FPWYQQFPC TTCCCATGGTILSVSDK ATAC
5 AAACCTGAG  TRUE AAACCTGAG  TRUE 516 TRB TRBV31 TRBJ2-1 TRBC2 TRUE TRUE AQTIHQWPV GCTCAGACT, GKSSPN GGGAAATCA LYWYWQAT!I CTCTACTGG1SITVG TCTA
6 AAACCTGAG  TRUE AAACCTGAG  TRUE 541 TRA TRAV14D-1 TRAI57 TRAC TRUE TRUE QQQVRQSPC CAGCAGCAG DSTFNY GACAGCACT FPWYQQFPC TTCCCATGGTIRSVSDK ATAC
7 AAACCTGAG  TRUE AAACCTGAG  TRUE 565 TRB TRBV1 TRBJ2-5 TRBC2 TRUE TRUE  VTLLEQNPR\ GTGACTTTG NSQYPW  AATTCCCAG1MSWYQQDL ATGAGCTGG LRSPGD CTGC

Courtesy of Todd Knutson



